2,054 research outputs found

    Quantum phases in a doped Mott insulator on the Shastry-Sutherland lattice

    Full text link
    We propose the projected BCS wave function as the ground state for the doped Mott insulator SrCu2(BO3)2 on the Shastry-Sutherland lattice. At half filling this wave function yields the exact ground state. Adding mobile charge carriers, we find a strong asymmetry between electron and hole doping. Upon electron doping an unusual metal with strong valence bond correlations forms. Hole doped systems are d-wave RVB superconductors in which superconductivity is strongly enhanced by the emergence of inhomogeneous plaquette bond order.Comment: 4 pages, 3 figure

    A Search for Hard X-Ray Emission from Globular Clusters - Constraints from BATSE

    Get PDF
    We have monitored a sample of 27 nearby globular clusters in the hard X-ray band (20-120 keV) for approximately 1400 days using the BATSE instrument on board the Compton Gamma-Ray Observatory. Globular clusters may contain a large number of compact objects (e.g., pulsars or X-ray binaries containing neutron stars) which can produce hard X-ray emission. Our search provides a sensitive (~50 mCrab) monitor for hard X-ray transient events on time scales of >1 day and a means for observing persistent hard X-ray emission. We have discovered no transient events from any of the clusters and no persistent emission. Our observations include a sensitive search of four nearby clusters containing dim X-ray sources: 47 Tucanae, NGC 5139, NGC 6397, and NGC 6752. The non-detection in these clusters implies a lower limit for the recurrence time of transients of 2 to 6 years for events with luminosities >10^36 erg s^-1 (20-120 keV) and ~20 years if the sources in these clusters are taken collectively. This suggests that the dim X-ray sources in these clusters are not transients similar to Aql~X-1. We also place upper limits on the persistent emission in the range 2-10*10^34 erg s^-1 (2 sigma, 20-120 keV) for these four clusters. For 47 Tuc the upper limit is more sensitive than previous measurements by a factor of 3. We find a model dependent upper limit of 19 isolated millisecond pulsars (MSPs) producing gamma-rays in 47 Tuc, compared to the 11 observed radio MSPs in this cluster.Comment: 20 pages; accepted, ApJ; uu encoded tar file; 7 figure

    Many-Spin Effects and Tunneling Properties of Magnetic Molecules

    Full text link
    Spin tunneling in molecular magnets has attracted much attention, however theoretical considerations of this phenomenon up to now have not taken into account the many-spin nature of molecular magnets. We present, to our knowledge, the first successful attempt of a realistic calculation of tunneling splittings for Mn12_{12} molecules, thus achieving a quantitatively accurate many-spin description of a real molecular magnet in the energy interval ranging from about 100 K down to 10−12^{-12} K. Comparison with the results of the standard single-spin model shows that many-spin effects affect the tunneling splittings considerably. The values of ground state splitting given by single-spin and many-spin models differ from each other by a factor of five.Comment: 3REVTeX pages, 2 figure

    Physical Properties of Metallic Antiferromagnetic CaCo{1.86}As2 Single Crystals

    Full text link
    We report studies of CaCo{1.86}As2 single crystals. The electronic structure is probed by angle-resolved photoemission spectroscopy (ARPES) measurements of CaCo{1.86}As2 and by full-potential linearized augmented-plane-wave calculations for the supercell Ca8Co15As16 (CaCo{1.88}As2). Our XRD crystal structure refinement is consistent with the previous combined refinement of x-ray and neutron powder diffraction data showing a collapsed-tetragonal ThCr2Si2-type structure with 7(1)% vacancies on the Co sites corresponding to the composition CaCo{1.86}As2 [D. G. Quirinale et al., Phys. Rev. B 88, 174420 (2013)]. The anisotropic magnetic susceptibility chi(T) data are consistent with the magnetic neutron diffraction data of Quirianale et al. that demonstrate the presence of A-type collinear antiferromagnetic order below the Neel temperature TN = 52(1) K with the easy axis being the tetragonal c axis. However, no clear evidence from the resistivity rho(T) and heat capacity Cp(T) data for a magnetic transition at TN is observed. A metallic ground state is demonstrated from band calculations and the rho(T), Cp(T) and ARPES data, and spin-polarized calculations indicate a competition between the A-type AFM and FM ground states. The Cp(T) data exhibit a large Sommerfield electronic coefficient reflecting a large density of states at the Fermi energy D(EF), consistent with the band structure calculations which also indicate a large D(EF) arising from Co 3d bands. At 1.8 K the M(H) data for H|| c exhibit a well-defined first-order spin-flop transition at an applied field of 3.5 T. The small ordered moment of 0.3 muB/Co obtained from the M(H) data at low T, the large exchange enhancement of chi and the lack of a self-consistent interpretation of the chi(T) and M(H,T) data in terms of a local moment Heisenberg model together indicate that the magnetism of CaCo{1.86}As2 is itinerant.Comment: 18 pages, 15 figures, 4 tables, 61 references; v2: extended the fits of experimental data by additional electronic structure calculations; published versio

    Dynamical control of electron spin coherence in a quantum dot

    Get PDF
    We investigate the performance of dynamical decoupling methods at suppressing electron spin decoherence from a low-temperature nuclear spin reservoir in a quantum dot. The controlled dynamics is studied through exact numerical simulation, with emphasis on realistic pulse delays and long-time limit. Our results show that optimal performance for this system is attained by a periodic protocol exploiting concatenated design, with control rates substantially slower than expected from the upper spectral cutoff of the bath. For a known initial electron spin state, coherence can saturate at long times, signaling the creation of a stable ``spin-locked'' decoherence-free subspace. Analytical insight on saturation is obtained for a simple echo protocol, in good agreement with numerical results.Comment: 4 pages, 4 figures with 3 of them in colo
    • …
    corecore